Featured Articles

Intel releases tiny 3G cell modem

Intel releases tiny 3G cell modem

Intel has released a 3G cellular modem with an integrated power amplifier that fits into a 300 mm2 footprint, claiming it…

More...
Braswell 14nm Atom slips to Q2 15

Braswell 14nm Atom slips to Q2 15

It's not all rosy in the house of Intel. It seems that upcoming Atom out-of-order cores might be giving this semiconductor…

More...
TSMC 16nm wafers coming in Q1 2015

TSMC 16nm wafers coming in Q1 2015

TSMC will start producing 16nm wafers in the first quarter of 2015. Sometime in the second quarter production should ramp up…

More...
Skylake-S LGA is 35W to 95W TDP part

Skylake-S LGA is 35W to 95W TDP part

Skylake-S is the ‘tock’ of the Haswell architecture and despite being delayed from the original plan, this desktop part is scheduled…

More...
Aerocool Dead Silence reviewed

Aerocool Dead Silence reviewed

Aerocool is well known for its gamer cases with aggressive styling. However, the Dead Silence chassis offers consumers a new choice,…

More...
Frontpage Slideshow | Copyright © 2006-2010 orks, a business unit of Nuevvo Webware Ltd.
Monday, 24 June 2013 09:45

Researcher makes batteries on 3d printer

Written by Nick Farrell



Very small ones

A researcher has used her 3D printer for something more than creating action figures of herself.

Jennifer Lewis, senior author of a recent 3D printing study, who is also the Hansjörg Wyss Professor of Biologically Inspired Engineering at the Harvard School of Engineering and Applied Sciences (SEAS) has come up with a way to print lithium-ion microbatteries the size of a grain of sand.

The printed microbatteries could supply electricity to tiny devices in fields from medicine to communications, including many that have lingered on lab benches for lack of a battery small enough to fit the device, yet provide enough stored energy to power them. She printed precisely interlaced stacks of tiny battery electrodes, each less than the width of a human hair.

The results have been published online in the journal Advanced Materials.

Nick Farrell

E-mail: This e-mail address is being protected from spambots. You need JavaScript enabled to view it
blog comments powered by Disqus

 

Facebook activity

Latest Commented Articles

Recent Comments